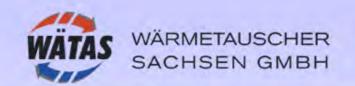


Pay Energy once -

use it several times

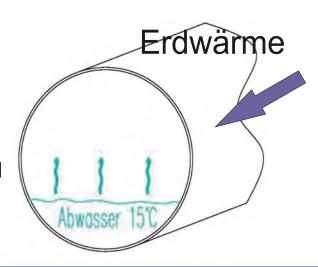
Improvement of the energetic treatment situation with use of the exhaust air of the sewer system

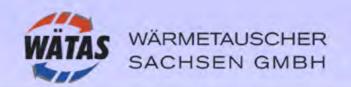


Delegation travel Budapest 7.-9. September 2010

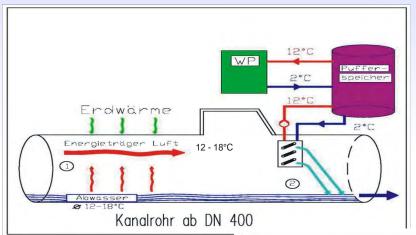
Scope:

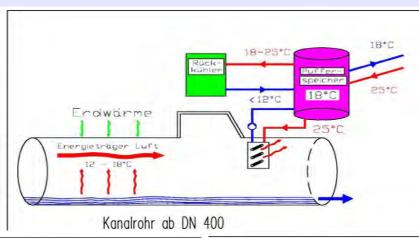
- relay of the fossil fuel gas
- decline of CO₂ load
- liberation out of the central supply
- use of renewable energy trough innovative solutions

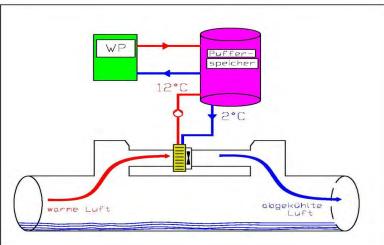


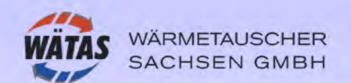

A alternative solution for the enregetic use of the sewer

- use of the energy source air -

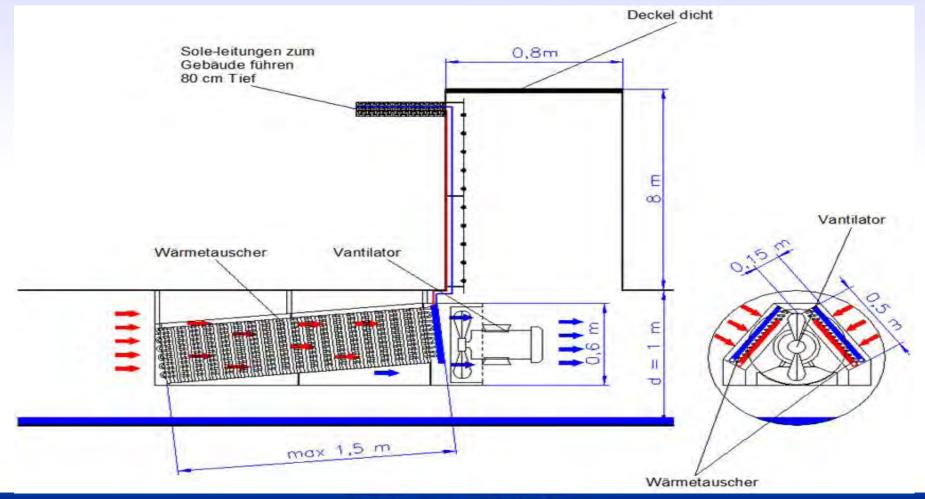

- relatively constant air temperature of 12 to 15 °C will be influenced from the sewer amount just slightly
- high relativ air humidity
- both ideal circumstances. 10 Kelvin are available for the energetic use for the heat pump system
- use of fin heat exchanger (material V2A/V4A) big surface for the temperature intake because of that
- no contact with dirty water
- relativly low capital costs
- from sewage and channel environment heated air rises in the channel
- cooled air is specific heavier than the environment air at the channel, falls down on the sewage surface and will be evacuated in flow direction

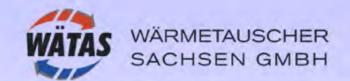

Trademark rights are announced


Innovative use of energy from channel systems



Extraction of warmth


Bypass- solution for special physical conditions



Extraction of cooling temperature

Placement of Heat Exchanger

Technical data

Heat demand office building 30 kW heating

4 kW service water

Sewer DN 1000

Usable length approx. 400 Meter

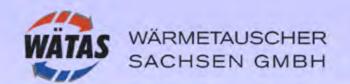
Volume flow average 148.000 m³/ hour

at 0,2 till 0,8 m/ sec

Relativly humidity average 72%

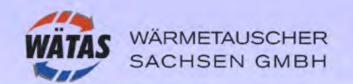
Capacity of special heat exchanger

in the channel 34 kW


power consumption effective pump

for circuit bond system 130 Watt

Heat pump heating capacity 34 kW


Power consumption including heat pump 3 kW

COP heat pump at 45/ 40 °C 4,1

CO₂ saving

Brennstoff Erdgas:	Heizwert	kWh/m³	10	10	10	
z.Zt. Benötigte Wärmemenge:		kWh/a	103.850	54.250	38.750	
Emissionsfaktor CO ₂ - Erdgas		kgCO ₂ /m ³	1,777	1,777	1,777	
Vollnutzungsstunden		Std	1.550	1.550	1.550	
vorhandene Leistung		kW	67	35	25	
Volumen Erdgas / a		m³/a	10.385	5.425	3.875	
z.Zt. Vorhandener CO ₂ Ausstoß		kg/CO₂/a	18.454	9.640	6.886	
Einsparung mit Wärmepumpe: Annahme Stromerze	ugung mit	Erdgas				
Einsatz Leistung WP		kW		35	25	
Cop		W/W		5,6	5,6	
Heiztemp.		°C		35	35	
elektr. Leistungsaufn.		kW		6,3	4,5	
Brennstoff Erdgas:	Heizwert	kWh/m³		10	10	
Vollnutzungsstunden	TICIZWCIT	Std		1.550	1.550	
Wärmemenge /a		kWh/a		54.250	38.750	
elektr. Leistungsaufn.		kWh/a		9.688	6.920	
Emissionsfaktor CO ₂ - Strom bei Erdgas	k	g CO ₂ /kWh		0,662	0,662	
CO ₂ Ausstoß		kg/CO ₂ /a		6413	4581	
Einsparung an CO ₂		kg/CO₂/a		3227	2305	
Einsparung an CO ₂ Einsparung an CO ₂		kg/CO₂/a %		3227	2305	

Thank you for your attention

Lindenstraße 5 09526 Olbernhau

Member of Management Volker Schubert

Tel: (037360) 69 49-0

Fax:(037360) 69 49-69

